Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Trophic interactions in changing landscapes: responses of soil food webs

Author:
  • Katarina Hedlund
  • B Griffiths
  • S Christensen
  • S Scheu
  • H Setälä
  • T Tscharntke
  • H Verhoef
Publishing year: 2004
Language: English
Pages: 495-503
Publication/Series: Basic and Applied Ecology
Volume: 5
Issue: 6
Document type: Journal article
Publisher: Elsevier

Abstract english

Soil communities in landscapes that are rapidly changing due to a range of anthropogenic processes can be regarded as highly transient systems where interactions between competing species or trophic levels may be seriously disrupted. In disturbed communities dispersal in space and time has a role in ensuring continuity of community function. Stable communities, in undisturbed systems, are more dependent on competition and other biotic interactions between species. We predicted how food web components would respond to disturbance, based on their dispersal and colonizing abilities. During decomposition, flows of energy and nutrients generally follow either a bacterial-based path, with bacteria as the primary decomposer and bacterial-feeding fauna and their predators forming the associated food web, or a fungal-based channel. Trophic links that were generally resistant to change were the organisms of the bacterial. pathway that have high abilities to disperse in time and passively disperse in space. Organisms in the fungal pathway were less resistant to disturbance. Resource inputs to the soil system are derived from plants, either through root exudation and root turnover during active growth or from dead plant material following senescence or agricultural tillage. Disturbances to the soil system can arise as a direct action on the soil, or indirectly from effects on the above-ground plant community. Disturbance-induced changes in plant community composition will change the soil food web composition. Organisms involved in direct interactions with plants (e.g. AM-mycorrhizal fungi) were also predicted to be vulnerable to disturbance. (C) 2004 Elsevier GmbH. All rights reserved.

Keywords

  • Ecology

Other

Published
  • Soil Ecology
  • ISSN: 1618-0089
Katarina Hedlund
E-mail: katarina.hedlund [at] biol.lu.se

Professor

Biodiversity

+46 46 222 37 98

+46 72 562 10 04

E-A321

50

Researcher

Centre for Environmental and Climate Research (CEC)

+46 46 222 37 98

50

Centre for Animal Movement Research
Evolutionary Ecology, Department of Biology
Ecology building S-223 62 Lund Sweden