Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Transcriptional analysis of the pheromone gland of the turnip moth, Agrotis segetum (Noctuidae), reveals candidate genes involved in pheromone production.

Author:
  • Maria Strandh
  • Tomas Johansson
  • Dag Ahrén
  • Christer Löfstedt
Publishing year: 2008
Language: English
Pages: 73-85
Publication/Series: Insect Molecular Biology
Volume: 17
Issue: 1
Document type: Journal article
Publisher: Wiley-Blackwell

Abstract english

Moths generally rely on pheromone communication for mate finding. The pheromone components of most moths are produced by a common pathway of fatty-acid biosynthesis coupled with species-specific modifications of the final products. Some genes involved in moth pheromone production have previously been described, whereas others remain to be characterized and thus the molecular mechanisms accounting for the production of species-specific blends are far from understood. The turnip moth, Agrotis segetum, has a multicomponent pheromone, consisting of at least four components derived from palmitic and stearic acid. Different populations produce and respond to different pheromone blends, which makes this species an excellent model for research on genes and molecular mechanisms involved in moth pheromone production. For this purpose, we performed an expressed sequence tag (EST) analysis of two cDNA libraries, one representing the female pheromone gland and the other representing the remainder of the insect body. Among 2285 ESTs analysed altogether, we identified a unigene set of 707 putative gene representatives. The comparative distribution of those in the two libraries showed the transcriptomes of the tissues to be clearly different. One third of the gene representatives were exclusively found in the pheromone gland. From sequence homology to public database information we assigned putative functional roles for a majority of the unigenes and then compared functional profiles of the two tissues. In the set of ESTs more abundant in the pheromone gland library, we found homologues of an acyl-CoA Delta11-desaturase, a G-protein subunit, a chemosensory protein as well as a juvenile hormone binding protein.

Keywords

  • Biological Sciences
  • RNA
  • Messenger: biosynthesis
  • Messenger: genetics
  • Sex Attractants: biosynthesis
  • Sex Attractants: genetics
  • Moths: metabolism
  • Moths: genetics

Other

Published
  • The insect pheromone brewery
  • Microbial Ecology
  • Pheromone Group
  • ISSN: 1365-2583
Maria Strandh
E-mail: maria.strandh [at] biol.lu.se

Researcher

MEMEG

+46 46 222 92 12

E-C211

50

Centre for Animal Movement Research
Evolutionary Ecology, Department of Biology
Ecology building S-223 62 Lund Sweden