Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Island biology and morphological divergence of the Skyros wall lizard Podarcis gaigeae: a combined role for local selection and genetic drift on color morph frequency divergence?

Author:
  • Anna Runemark
  • Bengt Hansson
  • Panayiotis Pafilis
  • Efstratios D Valakos
  • Erik Svensson
Publishing year: 2010
Language: English
Publication/Series: BMC Evolutionary Biology
Volume: 10
Document type: Journal article
Publisher: BioMed Central

Abstract english

BACKGROUND: Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, Podarcis gaigeae, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations. RESULTS: Geographically close islet- and mainland populations of the Skyros wall lizard exhibit strong divergence in throat color morph frequencies. Population variation in throat color morph frequencies between islets was higher than that between mainland populations, and the effective population sizes on the islets were small (Ne:s < 100). Population divergence (FST) for throat color morph frequencies fell within the neutral FST-distribution estimated from microsatellite markers, and genetic drift could thus not be rejected as an explanation for the pattern. Moreover, for both comparisons among mainland-mainland population pairs and between mainland-islet population pairs, morph frequency divergence was significantly correlated with neutral divergence, further pointing to some role for genetic drift in divergence also at the phenotypic level of throat color morphs. CONCLUSIONS: Genetic drift could not be rejected as an explanation for the pattern of population divergence in morph frequencies. In spite of an expected stabilising selection, throat color frequencies diverged in the islet populations. These results suggest that there is an interaction between selection and genetic drift causing divergence even at a phenotypic level in these small, subdivided populations.

Keywords

  • Biological Sciences

Other

Published
  • BECC
  • Molecular Ecology and Evolution Lab
  • ISSN: 1471-2148
erik_svensson
E-mail: erik [dot] svensson [at] biol [dot] lu [dot] se

Professor

Evolutionary ecology

+46 46 222 38 19

E-B254

50

Centre for Animal Movement Research
Evolutionary Ecology, Department of Biology
Ecology building S-223 62 Lund Sweden